

2395 Speakman Dr. Mississauga, ON Canada L5K 1B3

P: 1 905 822 4111 F: 1 905 823 1446 info.toronto.fire@element.com element.com

# ASTM E 84 Surface Burning Characteristics of "12mm ezoBord Acoustic Panel 100% PET"

| A Report To:          | <b>Archifibe Inc.</b><br>7-6845 Rexwood Road<br>Mississauga, ON, Canada<br>L4V 1S5 |
|-----------------------|------------------------------------------------------------------------------------|
| Phone:                | +1 647-767-8017                                                                    |
| Attention:<br>E-mail: | Jack Chen<br>jack@ezobord.com                                                      |
| Submitted by:         | Element Fire Testing                                                               |
| Report No.            | 21-002-297(A)<br>4 Pages                                                           |
| Date:                 | July 16, 2021                                                                      |



Page 2 of 4

1.0 ACCREDITATION To ISO/IEC 17025 for a defined Scope of Testing by the International Accreditation Service

## 2.0 SPECIFICATIONS OF ORDER

Determine the Flame Spread and Smoke Developed Indices based upon a single test conducted in accordance with ASTM E 84-21a, as per Archifibe Inc. reference Purchase Order No. Element - 062421 and Element Quotation No. 21-002-2590055 REV3 dated June 23, 2021.

#### 2.1 History of Revision

This is the original.

3.0 SAMPLE IDENTIFICATION (Element sample identification number 21-002-S0297-2)

Panel system described as, "Acoustic Panel 100% PET", and identified as: "12mm ezoBord Acoustic Panel 100% PET"

### 4.0 TEST PROCEDURE

The method, designated as ASTM E 84-21a "*Standard Method of Test for Surface Burning Characteristics of Building Materials*", is designed to determine the relative surface burning characteristics of materials under specific test conditions, where the material under test is mounted so that it forms the ceiling of a horizontal fire tunnel. A specified airflow is introduced through the tunnel and a specified flame is applied to one end. Observations are then made regarding the rate of flame spread along the specimen. Results are expressed in terms of Flame Spread Index (FSI) and Smoke Developed Index (SDI). There is no established relationship between those two values.

Although the procedure is applicable to materials, products and assemblies used in building construction for development of comparative surface spread of flame data, the test results may not reflect the relative surface burning characteristics of tested materials under all building fire conditions.

#### 5.0 SAMPLE PREPARATION

The test specimen consisted of a total of 12 sections of material, each approximately 0.472 inches (12 mm) in thickness by 21 inches (533 mm) in width by 24 inches (610 mm) in length. The sections were butted together to create the specimen length. Prior to testing, the specimen was conditioned to constant weight at a temperature of  $73 \pm 5^{\circ}$ F ( $23 \pm 3^{\circ}$ C) and a relative humidity of  $50 \pm 5^{\circ}$ . At the time of test initiation, the specimen was self-supporting.

The testing was performed on: 2021-07-15

### 6.0 SUMMARY OF TEST PROCEDURE

The tunnel is preheated to  $150 \pm 5^{\circ}$ F (66 ± 2.8°C), as measured by the floor-embedded thermocouple located 23.25 feet (7087 mm) downstream of the burner ports, and is allowed to cool to  $105 \pm 5^{\circ}$ F (40.5 ± 2.8°C), as measured by the floor-embedded thermocouple located 13 feet (3962 mm) from the burners. The tunnel lid is then raised and the test specimen is placed along the ledges of the tunnel so as to form a continuous ceiling 24 feet (7315 mm) long, approximately 12 inches (305 mm) above the floor. Three 8 foot (2438 mm) sections of 0.25 inch (6 mm) cement board are then placed on the back side of the specimen and the lid is then lowered into place.



Upon ignition of the gas burners, the flame spread distance is observed and recorded every second. Flame spread distance versus time is plotted. Calculations ignore all flame front recessions and Flame Spread Index (FSI) is determined by calculating the total area under the curve for the test sample. If the area under the curve (A) is less than or equal to 97.5 min·ft, then FSI =  $0.515 \cdot A$ ; if greater, FSI = 4900/(195-A). FSI is then rounded to the nearest multiple of 5.

Smoke Developed Index (SDI) is determined by dividing the total area under the obscuration curve by that established for liquid heptane, and multiplying by 100. SDI is then rounded to the nearest multiple of 5 if less than 200. SDI values over 200 are rounded to the nearest multiple of 50.

## 7.0 TEST RESULTS

### SAMPLE: "12mm ezoBord Acoustic Panel 100% PET"

| Approx. Time to | Maximum Flame           | Time to Maximum | Flame Spread | Smoke Developed |
|-----------------|-------------------------|-----------------|--------------|-----------------|
| Ignition (s)    | Front Distance          | Flame Front (s) | Index (FSI)  | Index (SDI)     |
| 23              | (ft.): 3.4<br>(m): 1.04 | 42              | 15           | 45              |

## 7.1 Observations of Burning Characteristics

The specimen ignited approximately 23 seconds after exposure to the test flame. Melting, dripping, and flaming dripping behavior was observed.

## 8.0 INTERPRETATION OF RESULTS

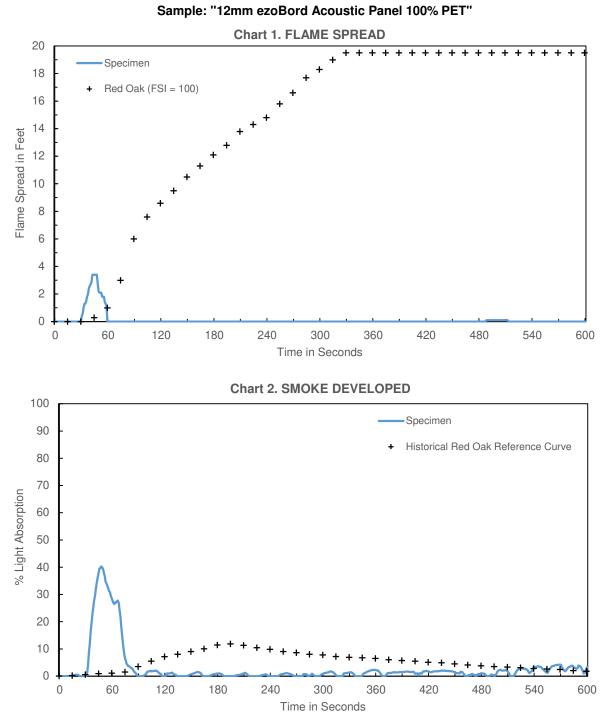
Industry documents such as the International Building Code (IBC) or NFPA 101 Life Safety Code refer to ASTM E 84 (UL 723, NFPA 255) test results using the following material classification categories:

|                                         | Flame-Spread<br>Index (FSI) | Smoke Developed<br>Index (SDI) |
|-----------------------------------------|-----------------------------|--------------------------------|
| Class 1 or Class A                      | 0 - 25                      | 450 Maximum                    |
| Class 2 or Class B                      | 26 - 75 450 Maximum         |                                |
| Class 3 or Class C                      | 76 - 200                    | 450 Maximum                    |
| Results Classification (if applicable): |                             | Class 1 or Class A             |

Imic spillere

Francis Williams, Technician.

lan Smith, Technical Manager.


Notes: This report is related only to the sample identified and shall not be reproduced, except in full, without approval. It is covered under Element Materials Technology Canada Inc. Standard Terms and Conditions of Contract, which are accessible at www.element.com, or by calling 1-866-263-9268. ASTM E 84 is a well-established test method that reports data in the form of indices. As such, MU cannot be calculated. In the reporting instructions, calculated values are rounded to the nearest multiple of 5 for FSI, and 5 or 50 for SDI, depending on the result. Since the rounding ranges establish precision and include potential uncertainty, by following the reporting instructions, the lab is considered to have satisfied the MU reporting requirements of ISO/IEC 17025 (section 5.4.6.2 (Note 2)).



Test Report No.: 21-002-297(A) ASTM E 84 Testing of "12mm ezoBord Acoustic Panel 100% PET" For: Archifibe Inc.

Page 4 of 4

## 9.0 TEST CHARTS



**ASTM E 84-21a** 

| Calculated Flame | Rounded Flame Spread | Calculated Smoke | Rounded Smoke                  | Maximum 23' Air  |
|------------------|----------------------|------------------|--------------------------------|------------------|
| Spread (CFS)     | Index ( <b>FSI</b> ) | Developed (CSD)  | Developed Index ( <b>SDI</b> ) | Temperature (°F) |
| 16.5             | 15                   | 43.1             | 45                             | 499              |